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Regulation of protein phosphatase-1
James B Aggen1*, Angus C Nairn2 and Richard Chamberlin1

Reversible protein phosphorylation is a major regulatory
mechanism of intracellular signal transduction. Protein
phosphatase 1 (PP1) is one of four major types of serine-
threonine phosphatases mediating signaling pathways, but the
means by which its activity is modulated has only recently
begun to come into focus. 
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Introduction
The pathways and regulatory mechanisms by which cells
process extracellular signals is a central issue in biology
[1]. Reversible protein serine/threonine phosphorylation is
a significant component of the intracellular signaling
machinery, directing such diverse functions as neurotrans-
mission, muscle contraction, glycogen synthesis, T-cell
activation, neuronal plasticity and cell proliferation.
Although the regulation of the large family of protein
kinases has been a major focus for several decades, it is
only recently that the regulation of protein phosphatases
has been studied in the same detail [2]. 

In eukaryotic cells, eight types of serine/threonine phos-
phatases have been identified, and they are classified
according to their requirements for metals, substrate
specificities, and sensitivities to various peptide and
natural product inhibitors [3]. Four of these types of
serine/threonine phosphatases, PP1, PP2A, PP2B (calci-
neurin) and PP2C, have been studied in detail. PP1, PP2A
and PP2B are structurally related to each other, whereas
PP2C appears to have a distinct evolutionary background.
PP1 is a major eukaryotic protein serine/threonine phos-
phatase that regulates diverse cellular processes such as
cell-cycle progression, protein synthesis, muscle contrac-
tion, carbohydrate metabolism, transcription and neuronal
signaling [4]. This review focuses on how the activity and
compartmentalization of PP1 are controlled by association
with regulatory subunits, and on some of the resultant
downstream cellular effects of these associations. 

Association of PP1 with regulatory subunits
In contrast to the protein serine/threonine kinases [5],
PP1 does not display obvious consensus sequence selec-
tivity, dephosphorylating multiple substrates in vivo and
in vitro [6]. Its action is modulated, however, through the
formation of heteromeric complexes with a variety of reg-
ulatory subunits [7]. These include the heat-stable
inhibitors, inhibitor-1 (I-1), its homolog DARPP-32
(dopamine- and cAMP-regulated phosphoprotein; molec-
ular weight 32 kDa), and inhibitor-2 (I-2) [8].

PP1 is also regulated by its interaction with a variety of
protein subunits that act in a manner distinct from the
inhibitor proteins and that appear to target the catalytic
subunit (PP1c) to specific subcellular compartments.
These targeting subunits serve to localize PP1c in proxim-
ity to particular substrates, and also to reduce its activity
towards other potential substrates [9,10]. In this respect,
many of the targeting proteins appear inhibitory towards
phosphorylase a, the substrate that is commonly used in
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phosphatase assays [11]. It is likely, however, that each
targeting protein recruits active PP1c to dephosphorylate a
specific phosphoserine or phosphothreonine residue in the

target substrate. In this way PP1c can act on diverse cellu-
lar targets with considerable selectivity. This manner of
controlling phosphatase activity is apparently not unique
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Table 1

Characterized PP1-interacting proteins and putative PP1c-binding sequences. 

Protein/gene Residues Sequence

Non-mammalian
Gac1p/GAC1 (Yeast GM homolog) S67070 65–76 TSPEKNVRFAIE
mel-11/MEL-11 (C. elegans M110 homolog) U86640 12–23 LQAKQQITFNVV
GIP1 (Yeast homolog of GM) P38229 441–452 QKKKRCVNFRNK

486–497 DRSTSSVRFDEN
GIP2 (Yeast homolog of GM) 6320895 216–227 LIRSKSVHFDQA
GIP2h/YIL045W (Yeast homolog of GM) S49933 191–202 LQRSKSVHFDRV

411–422 KVFVKNIYFDKK
SCD5 (Yeast/role in secretory function) S62061 26–37 GLGPPSVSFDFG

268–279 NFKSKKVRFSEH
YFL023W (Yeast) 6321086 31–42 DIRSRLVRFIND
YAL014 L05146 95–106 KESLKKVRFKND
YFR003c (Yeast) S56258 45–56 MPTRHNVRWEEN
SHP1 (Yeast) 6319413 272–283 PLKLLDVQFGQE

365–376 CNSTDTVKFLYE
REG1 (Yeast/glucose metabolism) 6320231 460–471 PTKNRHIHFNDR
REG2 (Yeast homolog of REG1) 6319525 163–174 KPRERHIKFNDN
sds22 [Egp1] (Saccharomyces cerivisiae) 6322655 295–306 LSRLETIYLEGN
sds22 (Schizosaccharomyces pombe) CAB11482 284–295 LKKLETVYFEGN
cet09a5.9 (C. elegans sds22 homolog) Z36753 281–292 LKGLQTVYLERN

Mammalian
Human GM AAB94596 57–68 SSGTRRVSFADS
Rabbit GM A40801 60–71 SSGGRRVSFADN
PTG AAB49689 56–67 NQAKKRVVFADS
PTG 149–160 TVKVKNVSFEKK
GL CAA77083 56–67 KKVKKRVSFADN
Human R5 4885559 79–90 NQAKKRVVFADS
U5 AAC60216 61–72 SQKKKRVVFADM
M110[ (MYPT1) 4505317 30–41 KRQKTKVKFDDG
Ryanodine-sensitive calcium release channel protein AAB32056 Unknown
Splicing factor PSF P23246 358–369 RGRQLRVRFATH
Ribosomal Protein L5 P22451 12–23 YFKRYQVKFRRR
p53BP2 Q13625 793–804 IAHGMRVKFNPL
NIPP-1 AAD22486 195–206 KRKNSRVTFSED
Spinophilin AAB72005 443–454 PAPSRKIHFSTA
PNUTS AAB96775 393–404 GRKRKTVTWPEE
GRP-78 P20029 61–72 RITPSYVAFTPE
Human Muscle PFK P08237 42–53 IFTGARVFFVHE
Human sds22 homolog CAA90626 143–154 ELEILDISFNLL

352–360 QIDATFVRF
HSVγ134.5 protein g585297 187–198 PATPARVRFSPH
Hamster Gadd34 A56535 500–511 PLRARKVHFSEN
Mouse MyD116 (Gadd34 homolog) S10001 543–554 PLKARKVHFAEK
Mouse 110pRB P13405 279–290 IDEVKNVYFKNF

184–195 VLKISWITFLLA
Human 110pRB P06400 285–296 IDEVKNVYFKNF

190–201 VLKVSWITFLLA
Rat Neurabin I AAC53454 452–463 IPANRKIKFSCA
Human HOX11 P31314 11–22 PGHAEPISFGID
Human DARPP-32 AAB30129 3–14 PKDRKKIQFSVP
Human MYPT2 4505319 48–59 RRGSPRVRFEDG
Porcine aorta inhibitory protein BAA22995 Unknown -RHARVTVKYD
Human I-1 Q13522 4–15 DNSPRKIQFTVP
Human I-2 CAA55475 Unknown
Human I-3 [87] 35–46 RKPEKKVEWTSD

The Genbank accession numbers are written in italics, and the putative consensus binding motifs are indicated in bold.
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to PP1. For example, the catalytic subunit of PP2A is typi-
cally isolated as a heterotrimer [8], and is further regulated
by interaction with specific targeting subunits [12]. 

The number of known PP1c targeting subunits is rapidly
increasing. To date, nearly 30 unique mammalian proteins
have been identified (Table 1). In addition, homologs of
several of these mammalian proteins have been identified

in yeast. The observation that PP1 associates with only
one inhibitor or targeting subunit at a time has suggested
that the interaction of the different subunits with PP1 is
mutually exclusive, and that the subunits bind to the same
or overlapping sites on PP1. 

Structural basis for the interaction of PP1c
and regulatory subunits
Many of the important studies of PP1 targeting subunits
have involved the GM protein that targets PP1c to glyco-
gen and the M110 protein that targets PP1 to myosin.
Initial studies of GM indicated that short peptides retained
PP1-binding affinity [13]. Other studies of the inhibitor
proteins DARPP-32 and I-1 indicated that short peptides,
including the threonine residue phosphorylated by protein
kinase A (PKA), also were able to bind to and inhibit PP1c
[14]. More recently, studies of G

M 
and M110 [15,16],

DARPP-32 [17,18] and I-1 [14], and peptide display
library analysis [19] have indicated that PP1 interacts with
the various targeting and inhibitor proteins through a short
amino acid motif. The exact sequence of the motif is not
identical, but one or more basic amino acids are followed
by two hydrophobic residues separated by a variable
amino acid (Table 1). The identification of the
basic/hydrophobic motif in PP1c binding subunits pro-
vides a structural basis for their interaction with PP1 in a
mutually exclusive manner.

To elucidate the detailed structural basis for the binding
of PP1 by the regulatory proteins, a peptide correspond-
ing to the relevant region of the GM subunit (GM[63–75]),
was co-crystallized with PP1c, and the structure was
determined using X-ray crystallography [20]. The struc-
ture shows that residues 64–69 of the GM[63–75] peptide
bind in an extended conformation to a hydrophobic
groove (Figure 1), near the carboxy-terminal region of
PP1c, located on the opposite side of PP1c from the active
site (Figures 2,3) [21,22]. Selective deletions of residues
from this sequence have shown that the valine and
phenylalanine residues are the most important, as removal
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Figure 1

X-ray closeup of the GM[63–75] peptide bound to PP1c. The ribbon
represents PP1c residues 240–297, and the grey portion is the
β12–13 loop corresponding to Try272–Gly280. The PP1c sidechains
shown in green are (counterclockwise from top right) Phe293,
Phe257, Leu243, Asp242 and Asp240. The bound peptide has the
sequence Gly–Arg–Arg–Val–Ser–Phe–Ala, and is shown as: grey,
carbon; red, oxygen; and blue, nitrogen atoms. Not shown are the
parallel hydrogen-bonding interactions between the peptide and the
edge of the β14 strand. The graphics for Figures 1–3 were generated
using Insight, and the coordinates for the complex [20] were obtained
online (www.pdb.bnl.gov; PDB code 1FJM).

Figure 2

Comparison of the X-ray crystal structures of
PP1c complexed with the inhibitor
microcystin-LR [21] and the GM[63–75] peptide
[20]. On the left is the PP1c–microcystin
complex; PP1c is shown as a purple ribbon,
and microcystin bound to the enzyme active
site is shown in space-filling representation. On
the right is the PP1c–GM[63–75] peptide
complex; PP1c (blue ribbon) is bound to the
peptide. In all structures the β12–13 loop is
shown in grey. Note the conformational
homology between the two PP1 structures,
with the exception of the β12–13 loop. The
coordinates for the PP1c–GM[63–75] peptide
were kindly provided by David Barford.
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of either abolishes binding to PP1c [20]. Similar conclu-
sions have been made from mutation studies of DARPP-
32 [17,18]. In addition, the peptide display studies
indicated that tryptophan can substitute for phenylalanine
[19], and one example of this sequence has been found in
the PNUTS protein, a nuclear PP1 targeting subunit
(Table 1). The Arg/Lys–Arg/Lys–Val/Ile–Xaa–Phe/Trp
motif (where Xaa is any amino acid) therefore represents a
consensus sequence for the recognition and binding of
regulatory subunits with PP1c.

Role of PP1 regulation by targeting subunits
The glycogen-binding subunits
The skeletal muscle glycogen-bound PP1 subunit (GM )
One of the primary sites of PP1c localization is skeletal
muscle glycogen stores, where PP1c is bound to the GM
targeting subunit, forming the PP1c–GM phosphatase
holoenzyme (PP1-G). GM is a 124 kDa glycogen-binding
protein found in mammalian skeletal and cardiac muscle
[23], where it accounts for up to 60% of the phosphory-
lase phosphatase activity in muscle extracts [24]. GM
binds to glycogen with high affinity (Kapp ∼ 6 nM), and

also tightly associates with the sarcoplasmic reticulum in
striated muscle [25]. 

In vivo, GM localizes PP1c to three glycogen-binding
enzymes involved in glycogen metabolism: glycogen
phosphorylase (phosphorylase), phosphorylase kinase and
glycogen synthase (Figure 4). The phosphorylated form
of each is a good substrate for PP1c in vitro [8], but the
activity of PP1c towards these enzymes is increased as
much as eightfold [26] when associated with GM and
glycogen. This increased activity does not extend to other
PP1c substrates, such as myosin light chain, that do not
bind to glycogen. In addition, as a result of the mutually
exclusive interaction of inhibitor and targeting subunits,
PP1c is less sensitive to cytosolic inhibitors when it is
bound to the GM subunit [27]. 

In response to adrenalin, a series of regulatory phosphory-
lation events occur within the region of GM that includes
the PP1c-binding domain, resulting in the inhibition of
PP1-G (Figures 4,5) [28]. Activation of PKA leads to rapid
phosphorylation of site 1 (Ser48), and this is followed by
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Figure 3

Figure resulting from rotation of the structures
in Figure 2 by 90° about the X axis.

Figure 4

Representation of the functional PP1-G
holoenzyme bound to glycogen and juxtaposed
with potential phosphorylated substrates. The
boxed portion of GM is the region containing
the phosphoregulatory sites 1 and 2, and the
open arrow indicates an expansion of that
region. The expansion shows the amino acid
sequence of the phosphoregulatory domain
and the PP1c-binding domain (site 2). Serine
residues regulated by cAMP-dependent protein
kinase or protein kinase A (PKA) are red and
bold, and the serine residue phosphorylated by
GSK-3 kinase is red, bold and italics. The
green, yellow and purple balls are
phosphorylated PP1 substrates, such as
phosphorylase, glycogen synthase and
phosphorylase kinase.
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phosphorylation of site 2 (Ser67) [29]. Site 2 is within the
PP1c targeting motif of GM and its phosphorylation results
in an estimated four orders of magnitude decrease in
binding affinity of GM for PP1c [30]; PP1c released from
the GM subunit possibly becomes associated with cytoso-
lic I-1 (see below) [29,30]. Site 1 phosphorylation is
thought to trigger the release process, perhaps by inducing
a conformational change that increases the rate of site 2
phosphorylation [30]. Whatever the mechanism, release of
PP1c results in rapid inhibition of phosphatase activity
towards the glycogen-bound substrates. The release of
PP1c into the cytosol is readily reversed by inhibition of
kinase activity, and occurs following the dephosphoryla-
tion of site 2, perhaps by PP2B (Figure 5) [30]. The
response to an adrenalin signal is therefore a double phos-
phorylation of GM, which in turn causes the PP1c subunit
to migrate from the glycogen stores to the cytosol with
concurrent deactivation. The overall cellular effect is to
promote glycogenolysis and mobilization of glucose
energy stores in response to the release of adrenalin. 

The activity of PP1 bound to glycogen can be stimulated
by insulin. Although details of the early events in this
pathway remain to be elucidated, the penultimate event
in skeletal muscle appears to be the activation of PP1-G
[31,32]. This insulin-stimulated activation of PP1-G in
skeletal muscle has been attributed to phosphorylation of
the GM subunit at Ser48 (site 1 in Figure 4) [31] by a
mammalian homolog of S6 kinase II [33], termed insulin-
stimulated protein kinase (ISPK) [31,32]. This proposed
role for ISPK is in question [32], however, and the
observed increase in PP1-G activity may be due to the
absence of glycogen and low salt concentration [30,34].

Regulation of PP1 by PTG
The PP1 regulatory subunit PTG is another glycogen-
binding protein highly expressed in adipocytes and other
insulin-sensitive tissues, such as skeletal muscle, heart
and liver [35,36]. It is most closely related to the hepatic
form of glycogen-binding subunit (GL; 42% identity), but
is less homologous to the GM subunit (26% identity) and
does not contain the phosphoregulatory sites found in GM.
In the PP1c targeting motif, PTG has a valine residue in
place of the serine equivalent to residue 67 in GM, indicat-
ing that it is not regulated by the phosphorylation/PP1c
release mechanism that modulates PP1-G activity. PTG
binds not only to PP1c and glycogen, but also to the major
enzymatic regulators of glycogen synthesis, namely phos-
phorylase, glycogen synthase and phosphorylase kinase
[36], participating in adrenalin/insulin-initiated signalling
events in glycogen stores.

On the basis of studies of insulin-stimulated glycogen syn-
thesis in fibroblasts and adipocytes [36,37], PTG is
thought to act as a molecular scaffold upon which PP1c
and its substrates are juxtaposed with glycogen, thereby

increasing the specific activity of PP1c by localization. In
addition, these studies have raised the possibility that the
PP1 inhibitor DARPP-32 (see below) also plays a role in
the regulation of glycogen synthesis [37]. Insulin may
stimulate the dephosphorylation, or prevent the phospho-
rylation, of DARPP-32, possibly through the reduction of
PKA activity. Conversely, activation of PKA would result
in phosphorylation of DARPP-32 and inhibition of PP1,
and consequently glycogen synthase activity. 

The myosin-binding subunits
The smooth-muscle myosin-binding PP1c regulatory subunit
(M110 )
A different PP1-regulatory protein complex, smooth muscle
myosin phosphatase (PP1-M), is involved in regulating

Review  Regulation of protein phosphatase-1 Aggen et al. R17

Figure 5

Model for the phosphoregulation of PP1-G. The boxed region of GM is
the phosphoregulatory domain (see Figure 4), and 1 and 2 refer to
sites 1 and 2, respectively. I-1 is the cytosolic PP1c inhibitor-1. PK
indicates protein kinase activity (PKA), and PP indicates protein
phosphatase activity (PP2B, PP2A or autodephosphorylation by
PP1c). The fully active PP1-G holoenzyme is shown in the upper left.
The species in the lower left represents the population of unassociated
PP1c and GM subunits from the dynamic equilibrium of their
association. The species in the upper right is the site 1 phosphorylated
holoenzyme, the activity of which is not well established. The species
in the lower right is the inactive phosphatase resulting from site 2
phosphorylation which promotes release of the catalytic subunit; the
released catalytic subunit is shown complexed with I-1. Adrenalin
signaling drives the equilibrium towards the lower right, whereas insulin
drives the equilibrium towards the upper left.
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muscle contraction, cell motility and cell shape. The PP1-M
holoenzyme consists of a heterotrimer containing PP1c
(perhaps a specific isoform) [38], a large (110–130 kDa)
subunit termed M110 (also termed MYPT1) [39], and a
small (21 kDa) subunit termed M20; a multienzyme form of
PP1-M associated with myosin light chain kinase (MLCK)
and calmodulin has also been observed [40]. The small
M20 subunit does not play any known role in the regulation
or activation of the holoenzyme, so the M110 subunit has
been the focus of efforts to elucidate the mechanism con-
trolling PP1-M activity. The holoenzyme binds to myosin
and myofibrils, accounting for ~80% of the phosphatase
activity towards phospho-myosin. PP1-M is also found at
cell–cell contact sites [41]. In smooth muscle, activated
PP1-M dephosphorylates the 20 kDa regulatory myosin
light chain, resulting in muscle relaxation. The smooth-
muscle myosin-binding subunits have been recently
reviewed [42]; the subject will therefore only be summa-
rized here, with the addition of recent reports. 

The amino-terminal 38 amino acids of M110 comprise the
PP1c-binding region [16], and the myosin- and
M20-binding regions are located towards the carboxyl ter-
minus [15,20,43]. The M110 subunit binds more strongly
to phospho-myosin than to dephospho-myosin, a charac-
teristic that prevents product inhibition. 

PP1-M is negatively regulated by phosphorylation of the
M110 subunit. Smooth-muscle contraction is stimulated by
Ca2+ or/and G-protein-coupled kinase activation, resulting
in phosphorylation of myosin and the M110 subunit of
PP1-M by a member of the Rho-kinase family [44]. This
phosphorylation of the M110 subunit results in inhibition
of PP1-M, but in contrast to the GM subunit, the catalytic
subunit is not released into the cytosol. Instead, auto-
dephosphorylation of the phosphorylated PP1-M results in
full recovery of phosphatase activity. 

In M110, the targeting motif at the amino terminus is
responsible for binding to PP1 and juxtaposing the active
site close to phospho-myosin substrate, whereas the
carboxy-terminal portion is responsible for regulating the
holoenzyme (Figure 6) [42]. In the proposed mechanism,
phosphorylation of the M110 subunit on Thr695 (number-
ing from chicken gizzard M110) by an activated kinase is
followed by docking of the phosphorylated region into the
active site, resulting in inhibition of myosin phosphatase
activity. Autodephosphorylation reverses the active site
occupation/inhibition, leading to active myosin phos-
phatase and muscle relaxation. Net inhibition or activation
is dependent upon the level of kinase activity, which is
stimulated by Ca2+ and ATP [40]. This mechanism of reg-
ulation is analogous in some respects to interaction of
phosphorylated I-1 and DARPP-32 with PP1 (see above),
but in I-1 and DARPP-32 the phosphothreonine residue is
not autodephosphorylated.

Skeletal muscle myosin phosphatase
In skeletal muscle, the major myosin phosphatase is a
complex between the β isoform of PP1 and the MYPT2
gene product (61% identity to MYPT1), but the mecha-
nism of its regulation is not well characterized [45].

Nuclear regulatory subunits
Nuclear PP1 targeting subunits
PP1 plays an important role in the nucleus, where it
interacts with at least two targeting proteins, NIPP-1 [46]
and PNUTS [47]. NIPP-1 is a heat- and acid-labile
protein that migrates on an SDS–PAGE gel with a mole-
cular weight of ~45 kDa [46]. The heterodimeric
complex of PP1c and NIPP-1, denoted PP1NNIPP-1, bind
strongly to RNA, and the binding preference is for U-
rich regions [48]. It is believed, therefore, that NIPP-1 is
a PP1 regulatory subunit that targets PP1 activity to as
yet unknown RNA-bound substrates. Although less well
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Figure 6

Proposed mechanism of M110 regulation of
PP1. PP1c is shown associated with the
amino terminus of the phospho-myosin-bound
M110 subunit. The phosphoregulatory Thr695
hydroxyl, located near the carboxyl terminus of
M110, is shown. The carboxy- and amino-
terminal portions of M110 are shown linked by
the central portion. The small M20 subunit is
shown bound near the carboxyl terminus of
M110, and the phosphorylated myosin residue
is represented by P. The active myosin
phosphatase is on the left, whereas the
inhibited myosin phosphatase is on the right.
In the proposed mechanism, the equilibrium is
shifted to the right (inhibition) by Ca2+-
stimulated kinase activity, resulting in muscle
contraction, whereas the equilibrium is shifted
to the left (active) following the depletion of
mobilized Ca2+, resulting in muscle relaxation.
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characterized, PNUTS has also been shown to contain
several carboxy-terminal domains that are likely to inter-
act with RNA or DNA [47].

PP1NNIPP-1 is regulated by reversible phosphorylation.
NIPP-1 is an excellent substrate for PKA and casein
kinase-2 (CK-2) in vitro [49]. Each kinase phosphorylates
two unique sites; PKA phosphorylates Ser199 and Ser178,
whereas CK-2 phosphorylates Ser204 (adjacent to the
PP1c binding motif) and Thr161 [50]. Phosphorylation of
NIPP-1 by either kinase results in increased activity of
PP1c towards phosphorylase, and the action of both
kinases results in an additive effect. In addition, phospho-
rylation of PP1NNIPP-1 by PKA reduced the affinity of
NIPP-1 for PP1c, although treatment of PP1NNIPP-1 with
CK-2 did not [51]. Phosphorylation of NIPP-1 in a het-
erodimeric complex with PP1c results in an activation of
the holoenzyme without release of NIPP-1 [50], indicating
a mechanism of regulation distinct from PP1-G. The acti-
vation resulting from PKA and CK-2 phosphorylation of
NIPP-1 is dependent on salt concentration, being greatest
at physiological salt concentrations [50].

The cytosolic PP1 inhibitors
Inhibitor-1 (I-1) and DARPP-32
I-1 and DARPP-32 are homologous inhibitors of PP1c that
are regulated by phosphorylation by PKA. The heat- and
acid-stable inhibitor I-1 was first purified from rabbit
skeletal muscle [52], although the protein has a relatively
wide tissue distribution [53]. In contrast, DARPP-32 is
highly expressed in neurons in the basal ganglia, where it
is regulated by the neurotransmitter dopamine [4],
although lower levels of the protein are found in other
brain regions and non-neuronal tissues. Both I-1 and
DARPP-32 are typically cytosolic, although an isopreny-
lated, membrane-bound form of DARPP-32 has been
found in some cell types [37,54]. 

I-1 and DARPP-32 are both elongated monomers with no
obvious tertiary structure [52,55]. Within the amino-termi-
nal 40 amino acids, I-1 and DARPP-32 are 60% identical
[56,57], and in contrast to the targeting subunits discussed
above, both are clearly inhibitors of PP1c. In their unphos-
phorylated forms, however, the two proteins are poor
inhibitors of PP1c [52,58]. Phosphorylation of either
protein at a conserved threonine residue (Thr35 in I-1,
Thr34 in DARPP-32) converts either protein into potent
PP1c inhibitors (IC50 ∼1 nM) [59,60]. Both I-1 and
DARPP-32 show mixed competitive/noncompetitive
kinetics for inhibition of PP1, suggesting they interact
with PP1 at different sites on the enzyme [61,62]. 

Recent structure–function studies have provided strong
support for the two-site model for regulation of PP1c by I-1
and DARPP-32 [14,18]. Early proteolysis studies deter-
mined that the amino-terminal 54 residues of I-1 retained

activity similar to the full-length protein, and that a region
containing residues 9–22 was essential [63]. Subsequent
studies using synthetic amino-terminal DARPP-32 frag-
ments implicated two specific subdomains that are
required for binding and PP1c inhibition [18,58,62]. One
subdomain contains the Arg/Lys–Arg/Lys–Val/Ile–Xaa–
Phe/Trp targeting motif discussed above [18]. The second
subdomain corresponds to the residues surrounding the
phosphorylated Thr35 in I-1 or Thr34 in DARPP-32
(Arg–Arg–Pro–Thr(P)–Ala–Met–Leu). The targeting motif
interacts with PP1c at a site removed from the active site,
but inhibition results because the phosphothreonine occu-
pies the active site in such a way that catalysis (auto-
dephosphorylation) cannot take place [17,18].

On the basis of these and additional observations, a model
for PP1c regulation by I-1 or DARPP-32 can be proposed
(Figure 7) [30,64]. In the dephosphorylated state, I-1 or
DARPP-32 is inactive, and PP1 can associate with various
targeting subunits, allowing dephosphorylation of selec-
tive substrates. Following an increase in PKA activity, I-1
or DARPP-32 are phosphorylated and activated. In paral-
lel, PKA may also phosphorylate specific targeting pro-
teins close to or within the targeting motif, thereby
releasing PP1c, which is then inhibited by the activated
I-1 or DARPP-32. Inhibition of PP1 by this mechanism
works in a synergistic fashion with activated PKA, or other
active protein kinases, to increase phosphorylation of
downstream substrates. 

Much evidence indicates that DARPP-32 plays a central
role in mediating the actions of dopamine in the central
nervous system [65]. Thr34 of DARPP-32 is phosphory-
lated by PKA in response to activation of the D1 subclass
of dopamine receptors [66]. Inhibition of PP1 by phospho-
DARPP-32 in turn regulates the phosphorylation status of
many downstream targets, including various neurotrans-
mitter receptors and ion channels. The reverse process, in
which DARPP-32 is dephosphorylated, results in disinhi-
bition (activation) of PP1. In neurons, glutamate signaling
at the N-methyl-D-aspartate (NMDA) receptor results in
activation of PP2B (calcineurin), which dephosphorylates
Thr34 in DARPP-32 [67]. In vitro, DARPP-32 is also effi-
ciently dephosphorylated by PP2A [60,68], and recent
studies suggest that PP2B and PP2A may act synergisti-
cally in neurons to dephosphorylate Thr34 [69].

Although DARPP-32 and I-1 are phosphorylated by PKA
and regulate PP1 by the same mechanism, there are sig-
nificant differences in the phosphorylation of the two pro-
teins by other protein kinases. A recent study has shown
that DARPP-32 is phosphorylated at Thr75 by cyclin-
dependent kinase 5 (cdk5) in intact neurons [70]. Phos-
phorylation of Thr75 converts DARPP-32 into an inhibitor
of PKA, and prevents phosphorylation of Thr34. Reduc-
tion in phospho-Thr75 in neurons results in increased
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phosphorylation of PKA substrates. Thus, depending on
whether Thr34 or Thr75 are phosphorylated, DARPP-32
appears to control PP1 or PKA, respectively. DARPP-32 is
also readily phosphorylated in vitro on Ser137 and Ser189
by CK-1 [71], and Ser45 and Ser102 by CK-2 [72]. CK-2
phosphorylation of Ser102 increases the rate and extent of
phosphorylation at Thr34 by PKA (but not by PKG). CK-1
phosphorylation of Ser137 inhibits dephosphorylation of
Thr34 by PP2B, without affecting the inhibition of PP1c
[73]. Significant in vivo phosphorylation of Ser102 and
Ser137 have been observed [71], and it has been proposed
that CK-1 and/or CK-2 phosphorylation function to rein-
force PP1 inhibition in vivo. Additionally, PP2C appears to
be the primary phosphatase responsible for Ser137
dephosphorylation in vivo [74], therefore indicating that
PP2C may indirectly regulate PP2B, and PP1, through
dephosphorylation of DARPP-32. 

Inhibitor-2 (I-2)
A third PP1 inhibitor, I-2, was first discovered in rabbit
skeletal muscle [75]. In its unphosphorylated form, I-2
potently inhibits PP1c (IC50 ∼1 nM) [76]. In contrast to
the other inhibitors, however, inhibition of PP1c by I-2
exhibits competitive kinetics, implying that I-2 does not
interact with PP1c in the same way as do I-1 and
DARPP-32 [61]. The inhibition of PP1c by I-2 is competi-
tive with respect to inhibition by okadaic acid [77], sug-
gesting that a primary binding site of I-2 interacts with the

active site of PP1. I-2 does not share any amino acid
sequence with I-1 and DARPP-32, and no obvious con-
served Arg/Lys–Arg/Lys–Val/Ile–Xaa–Phe/Trp targeting
motif is present. A recent study has elucidated some of the
details of the interaction of I-2 with PP1c, however [17].
The results obtained indicate that I-2 interacts with PP1c
via a unique amino-terminal motif that is distinct from
that found in I-1, DARPP-32, and the other targeting pro-
teins discussed above. In addition, a central region of I-2 is
also required for binding and to PP1c and inhibition of
enzyme activity. This central region appears to interact
with the region of PP1 that contains the binding site for
the conserved Arg/Lys–Arg/Lys–Val/Ile–Xaa–Phe/Trp
motif, but the actual motif is not present. 

The physiological role and mechanism of regulation of I-2
remain unclear, despite much research. PP1 isolated as a
soluble complex with I-2 is historically termed the
ATP/Mg-dependent phosphatase, and in vitro GSK-3
phosphorylation of I-2 in this complex activates the phos-
phatase catalytic subunit [78]. The physiological relevance
of this has been questioned, however [79]. I-2 is also phos-
phorylated at the Ser82, Ser120 and Ser121 residues by
CK-2 in vitro [80,81] and in vivo [82,83], but the CK-2
phosphorylations are reported not to affect the phos-
phatase activity of the complex [80,84]. Possibly phospho-
rylation may influence the subcellular distribution of I-2
[83]. There is evidence that I-2 is involved in modulating
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Figure 7

Model for PP1c interaction with DARPP-32. The regulatory subunit
binding site and the active site on PP1c are labeled B and C,
respectively. A targeting subunit is shown bound to a localizing
determinant. The two subdomains of DARPP-32 are represented as a
pink ball (subdomain 1 containing the targeting motif) and an orange
oval (subdomain 2 containing the phosphoregulatory domain),

connected by a linker. The species shown at the far left is the active
PP1 phosphatase holoenzyme. DARPP-32 is activated by Thr34
phosphorylation, possibly accompanied by phosphorylation on the
targeting subunit that reduces its affinity for PP1c, and the released
PP1c is fully inhibited by two-point binding with phospho-DARPP-32
(shown as the species on the far right).
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cell-cycle events, because its expression levels and nuclear
localization peak during the S and M phases [83,85]. Inter-
estingly, PP1 also localizes to the nucleus during the G2/M
transition of the cell cycle [86].

Conclusions
The localization, activity and substrate selectivity of PP1 are
intimately intertwined and are controlled by interaction
with a large number of regulatory proteins. Interaction of
these regulatory proteins with PP1 appears in most, if not
all, cases to be dependent on binding of a conserved
Arg/Lys–Arg/Lys–Val/Ile–Xaa–Phe/Trp motif to a site on
the catalytic subunit of PP1 that is removed from the active
site. Interaction via this targeting motif ensures mutually
exclusive binding, and increases the activity of PP1 towards
specific substrates, dependent upon which regulatory
subunit is bound. Further positive or negative regulation of
activity is achieved by reversible phosphorylation of the reg-
ulatory subunit. Cytosolic inhibitors also contribute to the
regulation of phosphatase activity and appear to interact
with the same PP1 regulatory site, as well as the active site
itself. The elucidation of a putative PP1c binding consensus
sequence opens the door for developing nonpeptide ligands
to selectively disrupt the interaction of the regulatory sub-
units with PP1c, thereby inhibiting or activating specific
PP1 functions. In addition, PP1c-regulatory subunit het-
erodimers can participate in the formation of much larger
complexes, suggesting further complexity in PP1 regulation. 
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